A Limit Relation for Dunkl–Bessel Functions of Type A and B
نویسندگان
چکیده
We prove a limit relation for the Dunkl–Bessel function of type BN with multiplicity parameters k1 on the roots ±ei and k2 on ±ei ± ej where k1 tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkltype Bessel function of type AN−1 with multiplicity k2. For certain values of k2 an improved estimate is obtained from a corresponding limit relation for Bessel functions on matrix cones.
منابع مشابه
A Positive Radial Product Formula for the Dunkl Kernel
It is an open conjecture that generalized Bessel functions associated with root systems have a positive product formula for non-negative multiplicity parameters of the associated Dunkl operators. In this paper, a partial result towards this conjecture is proven, namely a positive radial product formula for the non-symmetric counterpart of the generalized Bessel function, the Dunkl kernel. Radia...
متن کاملPaley–wiener Theorems for the Dunkl Transform
We conjecture a geometrical form of the Paley–Wiener theorem for the Dunkl transform and prove three instances thereof, by using a reduction to the one-dimensional even case, shift operators, and a limit transition from Opdam’s results for the graded Hecke algebra, respectively. These Paley– Wiener theorems are used to extend Dunkl’s intertwining operator to arbitrary smooth functions. Furtherm...
متن کاملGeneralized Dunkl-sobolev Spaces of Exponential Type and Applications
We study the Sobolev spaces of exponential type associated with the Dunkl-Bessel Laplace operator. Some properties including completeness and the imbedding theorem are proved. We next introduce a class of symbols of exponential type and the associated pseudodifferential-difference operators, which naturally act on the generalized Dunkl-Sobolev spaces of exponential type. Finally, using the theo...
متن کاملLimit theorems for radial random walks on p × q - matrices as p tends to infinity
The radial probability measures on R are in a one-to-one correspondence with probability measures on [0,∞[ by taking images of measures w.r.t. the Euclidean norm mapping. For fixed ν ∈M1([0,∞[) and each dimension p, we consider i.i.d. R-valued random variables X 1 , X 2 , . . . with radial laws corresponding to ν as above. We derive weak and strong laws of large numbers as well as a large devia...
متن کاملBilinear biorthogonal expansions and the Dunkl kernel on the real line
We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and Fourier-Neumann type series as special cases. Concerning applications, several new results are obtained. From the Dunkl analogue of Gegenbauer’s expansion of the plane wave, we...
متن کامل